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Abstract

It is shown in this paper that classical approach to condition monitoring of critical systems
can be supplemented by holistic models, which enable the best symptom of condition to be chosen
and the evolution of the sytem condition to be simulated. When this is not possible, and where
large symptom data base exist, we can apply singular value decomposition (SVD) as the newest
data mining procedure to obtain symptom evolution model. By using SVD it is possible to have
two additional independent fault discriminant: SD and SG, with the high dynamics of evolution.
Moreover we can add life count as the first approximation of a logistic vector describing the unit
life history. It is also possible to use the value of pseudo - determinant of a symptom observation
matrix, and to correlate between this new discriminant and the symptom observation matrix to
minimise the redundancy of symptom measuring space.

1 Introduction

Contemporary systems in operation, like machines, vehicles, and many structural systems, are growing
in structural and functional complexity. On the other hand there is a constant demand from the users of
these systems to increase their safety and reliability in operation. There seems to be only one solution.
the monitoring of condition, of the critical systems in operation. Such systems are more and
more mechatronic in nature, so being inteligent and synergetic combination of information technology
and other branches of engineering, control, electric, mechanical, civil, etc. One of the challenges in
development of condition monitoring of such contemporary system lies in their mechanical subsystem.
This may be the critical task of determination of the structural integrity, the residual strength, the
advancement of the wear processes, etc. Hence, the questions needed usually to be answered by the
users are as below.

e What is the current condition of the system in terms of the safety and reliability 7
e What are the causes of such condition, and what actions are needed?

e What will be the evolution of the current condition, and what is the assessment of system residual
life?

In order to answer these questions with the high confidence level we should have an identified and
workable holistic model of a system in operation. It means, we need model which enable us to simulate.

e Short term dynamics of the system, like vibration, noise, etc, with the time -t.
e Long term evolution of system condition during its life (operation) with time 8.

e The influence of the system life history on its condition, in particular the history of the external
influence, like severity of load, quality of maintenance / repair, etc.
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Figure 1: Simplified Model of Two Mechanical Systems under the Corrosion Action

As we can see, the challenge is as high as critical are systems in operation. With the sophisticated
measuring technology of today in our possession now, this challenge concerns mainly modelling and
identification of critical systems, and transforming this knowledge into condition monitoring purposses.
In this paper we will address these issues, in some cases pointing only the problem and giving some
references, if any. We will propose also a new method of condition discrimination in the symptom
space, what enables to increase the accuracy and reliability of condition recognition, and to reduce
the symptom measuring space i. e. the number of symptoms we observe.?

2 Holistic and Symptom Models

Asit is known [1] there are two most important wearing processes, errosion and fatigue, which a system
may undergo during its life time §. Trying to establish the holistic model for a mechanical part of the
system under such wearing processes we will start from the continuous description of the mechanical
subsystem. There were many approaches to model the fatigue process in a structure in a simple way
[14], [8], but they are correct in special narrow conditions, and so far need many improvements. Much
better situation is in modelling of system errosion, with corrosion as the special case. As an example.
let us take the steel chimney, or the platform leg, modelled as a beam under the action of wind and
sea waving and the corrosion. The case is fully described in {9, 10], so here we will refer only to the
most substantial moments of it. As we know the corrosion changes the mass - m, and the moment of
inertia - I of the beam during the system life in the following way (see Fig 1).

m(z, D(z,8)} = mo{l — GC%[H(Z) — H(z - a)]} }

I(z,D(,0)] = Io{1 — 0. 4[H(2) - H(z — a)]}*. o

with the dynamic forcing term

fz0) = Z5(1). (2)

and the o. as the speed of the corrosion, and R critical radius of the beam, H(*) is the Heaviside step
function.
Hence the resulting holistic equation of beam vibration in ’t’ and condition evolution in '8’ may be

written as

mo{l ~ o &{H (z) ~ H(z ~ a)]}%—iﬂ +amo{l —o.&[H(z)- H(z ~ a)]}g%—f—
TEI{1 - 0of{H(2) ~ H(z — o)} TD = (1),

The decomposition of the solution of the equation into the eigenvalue and eigenvector domains will
get

(3)

?Symptom is the measurable quantity covariable with condition of system in operation
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Figure 2: The course of the normalized fundamental vibration period as the symptom of condition for
the structural part with corrosion

G50 + a;(0)4; (1) + wH(O)a;(t) = 2= [ 37 (D)T;(2,8)dz,
with the eigenvibration equations
—w2(8)mo{l — o H (2) — H(z — a)]}U;(z, 0)+

+EI{1 — 0 5[H(2) — H(z — )P 22E0 = o,

and the abbreviation for model damping

a](o) = 25](0)“)](9)7 wj = mz%jv J =12,..,

where ¢;(¢) is the principal (generalized) coordinate, U,(z,8) is the eigenfunction (normal mode), and
myg; the generalized mass, w;(6) eigenvibration frequency, T;(6) eigenperiod of vibration.

It was found by simulation that the reciprocity of the first eigenvalue, so the first eigenperiod of
vibration of the beam model, will change much during the system life as it is shown in the figure 2.
Here the first eigen period of system vibration changes almost ten times during the life of the system.
Hence it can be applied for the condition monitoring as the good symptom of its condition under the
influence of dynamical "t’ forcing and the corrosion '8’

For the discrete or lumped models of mechanical sytems we can apply the evolutionary models for its
mass - m, stiffness - k, and damping - c, coefficients [9], [10]. Denoting there dimensionless life time
as D = % of a system (part), with breakdown time 6, we can write

m(D) = mo(1 £ ap D),
k(D) = ko(l + amD)’Yma
(D) =c,(1xa.D)e, 15)

with the sign and coefficients &, @m, Ym, @k, Ths @er Ve 10 be assumed or identified in the process of
modelling and validation of a system model.

Putting the evolutionary parameter values into the model of a specific system, we can obtain as the
solution of the ordinary differential equations (or a system of), the change in system condition in
terms of the chosen symptom. This may mean its amplitude of vibration, the fundamental period of
vibration, or some more appropriate measurable quantities, (more you can see in [8], [10]).

We can infer from the above that in some simple cases, like beam, or bridge as a beam system, etc.
the evolutionary models of system dynamics, and system life, can be presented and solved succesfully.
But for more complicated shapes and modes of parts interaction, like for ball or roller bearing, this
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Figure 3: Energy Processor as the evolutionary model of systems in operation with destructive and
ageing feedback

can not be done as yct (to the author knowledge).

However on the contrary, with the modern measuring and signal processing technology we can obtain
a bunch of measurable quantities (symptoms like kurtosis for the ball bearings), presenting better or
worse, the real system evolution, etc.

So instead of holistic model, we can present a model of symptom evolution in # domain for the system
in operation. If we model the system under consideration, or its part (ball bearing for example), as
an Energy Processor (EP) evolving during its life (operation), we can obtain the bunch of symptom
models describing the condition evolution of systems in operation. Refering to the newest book [10]
and papers on this subject [16], we will present below only the essential moments of the EP model,
the behaviour and resulting possibilities of EP as a model of systems in operation.

3 Energy Processor (EP) as a Symptom Model of Systems in Op-
eration

The energy processor model of systems in operation concerns long term behaviour, i.e. evolution
of system properties observed -in its life time 8. It consists of one energy input and two outputs.
one for upgraded energy and the other for the degraded (dissipated) energy. The incoming energy
is transformed inside the system into the needed form (product), i.e. upgraded. The price for this
transformation is internal dissipation and resulting system damage, and also external dissipation of the
remaining part of energy. As it is known, every system, or even the bit of material, has finite damage
capacity. On the other hand in many cases of system operation there exist so called destructive
feedback - the worse condition of the system the more energy it dissipates, and the ageing feedback
- the older the system is the less efficient are the energy income and upgrading processes. Under such
assumptions we can present the model of EP as in the Figure 3.

There are four postulates (or constitutional equations) for the EP which must be fulfilled here. Firstly,
the input power (energy time rate) V; must be balanced by the upgraded power N, and the dissipated
power Ny. Also the dissipated power is divided into two streams of power: internally accumulated
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N4, and externally exported V. Hence we can write
N;,=N,+ Ng, Ng=Ng. + V. (6)

Secondly, there is a very important destructive feedback in the system, j.e. the accumulated dissipated
energy Eq4q (which is the evidence of damage advancement in the system) controls the flow of dissipative
power V exported ountside, and vice versa: with more external output of V there is more dissipation
intensity N4, and accumulation. Therefore, the differential increase of dEy, is proportional to the
corresponding increase of dV. Hence it follows

dV(8) = B dE4.(8,V), B = const. > 0. (7)

The accumulated internal part of the dissipated energy Ey, is a function of the system lifetime 8, and
may be calculated as the integral of Ng,, and is of course limited by the dissipative capacity of the
system Egy. So for the case of a system with limited damage potential it gives

8
Ean(6,V) = /0 (N4(8) — V(6))d6 < Ea. )

Finally it is postulated, that the internal structure of the EP, (i.e. identity of the system), remains
unchanged during its lifetime 8, which is expressed by identity realation

dNy
dv
After some calculations based on the above four assumptions we obtain the differential equation for
externally exported dissipated power [4]:
A G 1)d@

Vo 1-B(a-1)6 (10)

= o = const., > V =a ' Ng+constl, a> 1. (9)

Introducing [2] the breakdown time of the system, being here the time when the denominator ap-
proaches zero, and taking into account, that the dimensionless lifetime was proved to be the measure
of damage advancement of the system [3], one can get

Eiwal0) _ 6

67 = -], 1, d D=
= [8(a - 1)] o> an Ea 52

<1 (11)
Using this approach we obtain a very simple differential equation, and the solution for the dissipated
power of Birth&Death energy processor as below

v dD

— _ -1 :
=, 2 V=VA-D)T (12)

It is worthwhile remembering here, that according to the solution (12) the externally dissipated power
V tends to infinity when the system approaches the breakdown (6 = 6¢, or D = 1). The same is
true, of course, with respect to the total dissipated power Ny, according to the relation (9). But in
reality there will be no infinite power at the system breakdown, because the balance of power (6)
must be maintained and the destructive capacity of the system is limited. Hence, we can observe at
the breakdown moment, that all power delivered to the system N; will be almost entirely dissipated
for the destructive process -Ng. This is exactly what one can observe in case of breakdown of some
technical systems.

For such simple EP as the model of system (part) in operation it is possible also to present subsequent
bunch of symptom models with associated symptom reliabilty and hazard models. These possibilities
are shown in table 1 in an abbreviation, [4], [16]. The most important conclusion from this table are
enumerated below.
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Sympt.life curve | Sympt. reliability | Sympt.hazard |Cumul. hazard [Remarks:
So >0, ﬂsgl = R(S)=, or rate:h(S) = H(S)= y-shape coeff.
for D = 6/6, |Resid. Life AD =|S,-norm.sympt.| = —In R(S) = |Symptom Model:
[~ In(1 - D)]I/7 exp —(;—O)" Slo(s%)""1 (S%)'Y Weibull, S > 0
[—inD]~1/™ 1—exp —(5%)"" too complicated | ~ exp ——(%)_7 Fréchet, S > 0
(1- D)y 1/ (5—50)‘“’ 2 v1In 35—; Pareto, S > 5y > 0
Frechet asvmptot.

Table 1: Models of the symptom life curves , the system’s residual life, the respective hazard rate and
the cumulative hazard, as generated by the theory of evolution of Energy Processors (EP).

1. We can chosc analytical symptom models, from Weibull to Pareto, and make the best fit of some
data taken from the real case of symptom condition monitoring.

2. For every chosen symptom model we have apprioprate symptom reliability and hazard models
for further use.

3. Symptom relaibility in our model is equivalent to system residual life;

R(S)= AD(S)=1—-D(§)=1- "_g_)

This properties of EP model are very convenient in system condition assessment and forecasting. The
example of this is shown in the Fig 4, for the case of vibration condition monitoring of group of
diesel engines, where the peak vibration acceleration amplitude readings were taken each 10 thousand
kilometers, with the life scale on the figure being equivalent to 300 thousands kilometers [2]. As it
is seen from the graph the life assessment for the Weibull model (chosen) and Fréchet model differs
a little. So in practice it is good to carry both assessments of life, one as optimistic and the other
one as pessimistic with this respect, and to choose the best one with the minimal risk for the case
under the consideration.

4 The Life History of Systems

As it was presented extensively in [12, 13,15], each unit in operation has its own history; beginning
from the production stage of system life, its own history of operational load, maintenance and repair.
So, beside the set of symptoms to describe the system condition we should have also in our data base
so called logistic vector L' = {d,p,s,!,m,r,...} presenting the history of given unit. We should note
alsa, that the nature of some explanatory variables as the components of L, will of course change over
the set of units, but some may change even for the same unit, so being the function of the unit life 6.
It seems that one of the most important components of the logistic vector is the value of the cumulative
load (cl) applied to the unit till the given moment of life, when the symptom S was measured. If we
denote the current load of the unit as [(#), so cumulative load will be simply the integral of it, which
may be approximated as

[4 [4
cz(e)z/ l(:v)d.x:/(lo+ )5 v e =1,-6. (13)
o 0 dz

One can see from the above, the first approximation of the cumulative life can be the properly scaled
({,) life count 8. When we now recollect ourselves the counting of life of turbosets or turboengines, used
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Figure 4: Condition determination and residual life assessment of the dicsel engine by the computer
program basing on the EP model

extensively long ago, we can see now it has the deep motivation. Acknowledging this, we must append
at first the additional column - life count ’cl’ to our symptom data base and symptom observation
matrix,
Xpm = [57...5m] =[Skl

Iu another words if the symptom readings are S;(8x), (k - rows, j - columns of observation matrix),
we will append new column ¢l(8x). This means that each row of the new column will consist of value
1,8y with [, as the scaling factor. This is for keeping the same order of the magnitude of new variable as
for the other symptoms. In some cases it will give us the life in days, months, or any other equidistant
units (like for example the ordering number of measuremnets).
Of course, if we are fortunate that in our data base, outside of symptom readings, are also the
cumulative counts of units life, we should use this data with more benefit than from life counter.

5 TFault Space and Symptom Space in Condition Monitoring

When we perform vibration condition monitoring (VCM) of a critical system or its part, we normally
measure signals in some few locations, and by proper signal processing we can obtain more symptoms
of condition. sometimes 5 -15, to characterize the condition evolution of our critical system. Creating
the symptom space in such a way we have great redundancy, which means that the dimension of
symptom observation matrix and the dimension of fault space differ very much.

The assumption is here, that principial components of the observation matrix carries information about
independent faults in the system. But anyway, symptoms may be multicorrelated, and some may carry
little or nothing of differentiating or distinct information, and we are looking for trend of condition
evolution of each particular fault with minimal redundancy. This means, if system is in continuous
operation, giving continuous degradation of condition, i.e each particular fault and symptom must be
more or less monotonous growing. What is also important, that such newly created symptoms of
condition should be sensitive only to one fault, so should be discriminants [1] and with the greatest
dynamics of symptom evolution.

This problem of symptom space redundancy and its reduction, the search for fault discriminant with
good dynamics were recognized by the author as early as in 1980, when the paper 'Reduction of
Data Set in Vibration Condition Monitoring’ was published [17] and 10 years later in abbreviated
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version in the book form translated to English [1]. As we know the symptom observation matrices
are rectangular not quadratic, so the principial components decomposition of symptom observation
matrix must be done by its covariance matrix. If we define the reading of each measured symptom
at the life #x as 5;(6x) or column vector S; with &k = 1,...n rows, and j = 1,...,m, so our symptom
observation matrix X,, will be

Kom = [Sln-sm] = [Sjk]v (14)

and its quadratic matrix analogously to covariance matrix will get(T-transposed matrix)
Q= Xpm+ XT . (15)

That was the basis for the eigenvalue decomposition of information contained in symptom observation
matrix X,.,, and principial component decomposition of covariance matrix Q. In the problem of
minimizing of redundancy of the symptom observation matrix X,,, one step more is important, it
follows from the fact that the determinant of the covariance matrix Q equals the square of the volume
of m - dimensional perpendicular streched over our symptom observation matrix, i.e. V;2, = det(Q).
Hence, if in the symptom observation matrix X,,, there are some dependent symptoms, then some
sides of m - dimensional perpendicular will not be orthogonal, even some are close to zero and vice
versa. That was the basis for rejection rule of some symptoms in primary symptom obscrvation
matrix eighteen years ago. This idea works good with specially written computer program [17], but
we must remember that such decomposition concerns not the symptom observation matrix X,,, but
its covariance matrix Q. At the time of paper writing (1979) not so much was known on singular value
decomposition (SVD) for perpendicular matrices, and MATLAB computing system was not known
too.

Applying now SVD method to our symptom observation matrix one can get decomposition [18]

Xnm = Unn * Enm * Vn{ms (16)

with Uppn and Vp,, unitary singular vector matrices of respective order, and diagonal singular value
matrix

Tnm = diag(oy,...00), with oy > 03 2> ...0r >0, 0py1 = ..00 =0, | = mazx(n,m).
Another form of decomposition, much convenient to us is
Knm = Upn * L, * V"Im =Xiq05 % (uj * v;»r), (17)

with the singular values o; and u;,v; singular vectors as columns of respective matrices.

Using the SVD properties fully we can use another form of decomposition [18], non - normalized
singular vector of the information source o; i.e. associated with the fault number ’t’, which may be
called as fault discriminant

SD; = Xi(04) = Xpm * v = wgoy, t = 1, .1, .. (18)

In another words it is the total vectorial information contained in the symptom observatiom matrix
X,m, which concerns the fault ’t’.

As each singular value o, is the measure of the information contents, so we can define the relative
measure of information content as concerning the given fault in the form

O

r . kd
DI &

ICtEIC(O'g): t:].,...‘l‘. (19)
But looking for decomposition {17) one can say, that each submatrix of this decomposition possess
also all the information concerning one fault only. Hence if we sum up all rows of the submatrix
o, * (2, + v]), we obtain also the column vector with n rows presenting another approach to extraction
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of fault related information from symptom observation matrix by its SVD.
We may call this new column vector as generalized fault symptom (SG) of given fault ’j’ as below

SGe = SG(O’;) = Oy * Erows(ut * 'U;T), t=1,..r (20)

where ¥,ous means summation over the rows of matrix (u: * vl).

As the source of informnation for both discriminant types is the same it is hard to say now that SD;
and §G; must be equal. Frankly speaking the generalized discriminant SG; was created first, and
symptom discriminant being the formal use of SVD properties as SDj as the second. Hence, having
no help with current state of SVD theory we will observe the common properties of SD; and 5G|, on
the data taken from Vibration Condition Monitoring (VCM) practice.

One word more concerning the redundancy minimization of symptom observation matrix X,,. As we
remember from the author previous work it was possible to do this by maximization of the determinant
value of the covariance matrix: det(Q) = I M.

By the analogy we can define a pseudo - determinant of symptom observation matrix, being the
product of its nonzero singular values: oy...0r > 0.

Vom = PsDet(Xpm) = HO’j, j=1l.. (21)
i=1

Hence minimizing the measuring space by looking for the Mazm(Vam) we can cancel redundant
symptoms from the measurement and processing procedures, if it maximize the value of the above
pseudo - determinant of symptom observation matrix Xom-

There is another possibility to do this on the basis on new derived generalized symptoms SG. To
complete our task of reduction of symptom observation space we need to know the contribution of
each symptom S, k& = 1,...n, to the detected fault represented by the pair oj, SG;. Hence we need
to calculate covariance or corelation coefficients among the given §G; and the symptom observation
matrix Xpm, where columns are individual symptoms. As we know usually the first two faults are
dominating with tespect of information amount, i.e. singular value oy > 03 > ...0.. So, it may be
enough to calculate this correlation coefficients, only for two faults o1, 0. Doing this and analyzing
the first Tow of normalized covariance matrix with respect to minimal contributuion it may be easy
to decide which symptom we can cancel from the observation matrix (space).

6 Modelling and Information Flow for Innovative Condition Mon-
itoring

It seems to be a time to summarize just given approach to VCM for complex systems in operation
with critical mechanical part lowering significantly the system’s safety and reliability indices. The
whole approach is illustrated in Fig 5 in two rows of information and action flow. As we can see in
the Figure the system in operation can be observed by its processes taking place in the measuring
space of the system. Basing on this information we can postulate some holistic model, and by system
identification procedures we can verify and validate the model. Later we can solve the model and find
system beahaviour by some eigenmode method, if the system model is linear. Having this, we can
simulate the short time dynamics and long term life behaviour, to look for improvement in the design
and to specify areas not possible to redesign, so in the areas where we need permanent condition
monitoring. .

When this step is done, we need symptoms of condition to describe the damage evolution of the given
subsystem to design the entire condition monitoring subsystem. To do this we need the symptom
data base gathered during the life testing phase of the system, or if it is not possible due to high
cost of testing or physiscal impossibility to build the test stand, (like in case of turboset), we have to
build the symptom data base observing a set of units of the same type in the real operating condition.
In this way we obtain symptom observation matrix [S;(8x)] = [S;k], where symptom create columns
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information on two faults, and the values of pseudo determinant equal 1531 is not high in comparison
to the symptom amplitude scale (top right). At the top right picture two dominant symptoms can be
seen, and the highest one does not look like fault symptom, because of its lack of asymptotic growths
needed by definition of symptom of condition of system in continuous operation. It is clearly seen,
looking for symptom discriminant SD1 or generalized symptom SG1 (bottom left), that they do not
carry fault information at all, but the noise. The second symptom discriminant SD2 and the gener-
alized symptom SG2 look similar to second dominant symptom of the observation matrix, with the
correlation coefficient of SG1 and SG2 equal 0.2193. It is seen also from the last row of the pictures
that SG2 is created mainly by the first three symptoms, and SG1 mainly by the dominant not fault
like symptom H,,.

Summarizing Fig 6 it is clearly seen we should exclude the dominant not fault like symptom (harmonic
ratio H,). Hence the next Figure 7 shows the application of SVD to the same case but the number of
columns of X,,, were cut to four only, three acceleration amplitudes and one velocity or cumulative
life cl. As the result of this cutt of observation space, from 13 to 4 symptoms, we can see now quite
different and very clear fault information, with the high value of PsDet = 1.007 % 10%, very clear
symptom discriminant SD1, and generalized symptom SG1, with much higher dynamics, and lower
correlation between SG1 and SG2 equal 0.1096 only, and clear contribution of measured symptoms to
SG1 (last row of pictures).

It is important to note here much higher dynamics of generalized symptom SG1 than symptom
dyscriminant SD1, or original symptom in top right picture. How it is possible that SD1 and SG1
have correlation coefficient value 1, and much different dynamics is not clear from the theory of SVD.
but one is sure it is much better to use for VCM generalized symptom SG1, than the others.

Next Figure 8 with the case of VCM of a big industrial fan shows the effect of introduction of cu-
mulative life count ’cl’. Here there were measurements of 5 symptoms, three all pass band velocity
amplitudes measured on the bearing pedestals, and the blade band velocity measured on both bearing
pedestals. For such symptom observation matrix (with pseudo determinant value equal 9.1 only) it
was very hard to find even good generalized symptom SG1 for the further use. Quite different situ-
ation can be seen when we append life count according to succession of measurement from 1 to 33
and comparable to symptom dynamics in the form ¢/ = 0.1,...,3.3, with the scaling {, = 0.1 here.
As it is seen from the Figure 8 the information amount rises twicely up to PsDet = 18.47, and the
dynamics of symptom discriminant SD1 and generalized symptom SG1 increased significantly with
much lower intercorrelation between SG which dropped from 0.73 till 0.16. Also the contribution of
observed symptoms and the life count to SG1 and SG2 is quite visible. Now one can be safe to infer on
the fan condition having good generalized symptom SG1 for condition determination and forecasting,
with initial and final values differing more than twice.

Concluding the advantages of SVD application to symptom observation matrix X,,, we can formulate
them as below.

1. We may now know (in the demonstrated example), how many independent faults are represented
in our symptom observation matrix X,,,, and we can say qualitatively which singular value
represents which dominant symptom in observation matrix.

2. In case of low information contents in X,,, we can reject an unwanted symptom from the
symptom primary data base X,,,, obtaining clear increase in information content, and have the
generalized symptom similar to one of the dominant symptoms in observation matrix Xy, .

3. It was possible to elaborate two new types of fault discriminant, the first SD being directly
a singular vector of the symptom observation matrix (18), and the other one a generalized
symptom SG with the unit correlation to 5D but with much greater dynamics.

4. Introduction of the life counter cl as the additional column appended to the symptom obser-
vation matrix increases its information contents (the value of pseudo determinant), decreases
intercorrelation of SG components, and increases much the dynamics of generalized symptom
SG1 prescribed to the first singular value oy.
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j = 1...m, and its rows are created by the measuring sequence of life time 05, & = 1...n, and usually
we have the relation n > m > 1.

At this moment of information flow diagram (see Fig 5) there is a time to append some additional
information on the history of each individual system unit, i.e. the components of the logistic vector
L. At the first approach we will use cumulative load: <! = .0k, (13). To such extended symptom
observation matrix Xnm = [S;,cl] we will apply singular value decomposition (SVD), while looking
for fault discriminants SD or SG, or for other succesfull algorithm of data mining procedures [19].
Also for minimization of redundancy of measuring space in terms of minimal number of symptoms
in X,m, or minimal symptom contribution reflected by normalized covariance coefficients, we will do
it by looking for the maximal value of pseudo determinant of X,,. Such elaborated information.
in terms of evolution of fault discriminant of a good sensitivity, can then go to the next step of the
diagnostic subsystem, i. e. to the condition inference engine, not shown in the picture. This may be in
the form of fuzy logic, some clasifier, expert system, or the neural net for the condition determination
and forecasting, made for example by rapid prototyping of condition inference engine. But here we
will not develop it more, because more and more one can buy it in special combined modules, (see for
example Data Engine of MIT gmbh [19]).

7 Examples of Singular Value Decomposition of a Symptom Ob-
servation Matrix

The symptom observation matrix X, is the rectangular matrix with n - rows (observations) greater
than number of different symptoms (columns)- m. These are the symptoms applied usually in vibra-
tion condition monitoring (VCM) like average, root mean square and peak amplitudes of vibration
acceleration, velocity, displacement, measured in the whole frequency band or in some chosen band,
like rotational or blade frequencies. It may be also specially calculated symptoms like Rice frequency
of vibration velocity or displacement,as well as harmonic index of these processes, etc (more see -
In dependence on the given monitoring case alltogether it can give 12 - 15 vibration symptoms as
columns of the matrix X,.,. Normally the symptom observation matrix of our diesel engine data
base begins with three amplitude measures of vibration acceleration, then velocity or cumulative life
counter ’cl’. In the case of such appended matrix we have extention 'a’ for the data file and vibration
velocity as a symptom is shifted to next place. This can be seen in diesel engine data file ’sil54dla’,
or 'sierla’ in VCM of huge industrial fan.

To such VCM data base SVD was applied and the results are presented in Fig 6 and 7 for the same
diesel engine, and in Fig 8 for industrial fan. Each figure presents 8 pictures of the same type: and
begining from the top left we have: the relative information contribution IC contained in the symptom

observation matrix (19), and also the value of pseudo determinant ( 21) indicated here as PsDet of

Xom-

The next top right picture shows the life course of dominant symptoms in the X, matrix, where one
can see their relative significance and their dynamics. The next layer of pictures show two symptom
discriminants calculated by SVD for the two dominant singular values SD1 and SD2 calculated accord-
ing to formula (18). The third row of pictures gives the life course of the new generalized symptoms
SG1 and SG2 calculated by formula (20), respectively for o3 and oy faults. Finally, the last row gives
normalized covariance coefficients of new generalized symptoms SG1, SG2, to the symptom observa-

tion matrix Xpm. In the same it presents real contribution (similarity and information content) of

each particular symptom to the given discriminants SG1.and SG2.

The figures shown here are typical for many cases calculated, and we can see here some average be-
haviour and possibility of SVD in application to symptom observation matrix. In general we can
say that the correlation coefficients between SD and SG discriminants are *+1, and the correlation
coefficient between SD1 and SD?2 is zero by definition. But let us analyze obtained results in detail.
Figure 6 presents the SVD results for diesel engines VCM carried by 13 measured and calculated
symptoms of just described nature. One can see here at the top left picture that X,m matrix carries
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5. Covariance coefficients (normalized) between generalized symptoms SG1, SG2, and columns of
symptom observation matrix X,,, determine clearly the contribution of each individual symptom
to given fault discriminant SG1 and SG2, being the good indication for reduction of symptom
space redundancy.

6. In view of these an automatic procedure using SVD seems to be possible. This will cut redun-
dancy of observation matrix, and use the resultant generalized symptom SG for further condition
recognition and forecasting.

8 Conclusions

Considering the condition monitoring (CM) of critical systems in operation it was shown here, that
a clasical CM approach can be well supplemented and extended. First, when we can elaborate the
holistic model of a system, we can simulate the life behaviour and choose the best symptom for sub-
sequent use. Such models, as shown on Fig 5, can be identified and validated by some identification
procedures.

Even when holistic modelling is not possible it is still possible to model long term evolution of system
by the Energy Processor model. This model gives possibility of modelling of evolution of symptoms of
condition of a system in operation, and to chose the best one for conditlon recognition and forecasting
basing on EP theory.

Having syptom observation matrix for the given case of CM of critical system we can aply SVD looking
for fault discriminants. By this new data mining procedure we can create two new discriminants of
faults SD and SG,with much greater dynamics of evolution than before.

When the redundancy of the symptom observation matrix is great, we can use the value of pseudo
discriminant and covariance coefficients of SG and X, to cancel some redundant primary symptom.
We can also add a new column of life count as the first approximation of the logistic vector representing
the life history of the given unit. This additional information increases the differences between fault
discriminants and their dynamics too, so enabling much better condition recognition and forecasting.
Acknowledgment This work was partially suported by the grant of State Comm. for Scientific Re-
search No 0902/T07/98114.
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